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We generalize a method of control of chaos that uses delayed feedback at the period of an unstable orbit to
stabilize that orbit. The generalization consists of substituting some portion of the nonlinear dynamical system
with a delayed dynamics rather than using a linear delay function for control. A further generalization, in which
the control function retains memory of all previous periods, allows the region of the parameter space over
which control can be achieved to be extended, but at the price of losing the ability to achieve superstability.
Nonlinear feedback results in a larger basin of attraction to the stabilized orbit than linear feedback. For the
simple test mapping studied~the logistic map! the dimension of the system increases from 1 to 2 by introduc-
ing control. We show in the case involving memory, for a particular choice of the relationship between the
control parameters, that the superstable orbit can be recovered without reducing the parameter space that can
be controlled. This particular solution, in addition to having the largest basin of attraction of the methods
considered, retains the dimension of the uncontrolled system.@S1063-651X~96!05908-9#

PACS number~s!: 05.45.1b

I. INTRODUCTION

A number of methods have been proposed for feedback
control of chaos@1–5#. Two methods of control that stabilize
an otherwise unstable periodic orbit have received consider-
able attention recently.

~a! Ott, Grebogi, and Yorke@2# introduced a method that
stabilizes unstable periodic orbits~UPO’s! found in the cha-
otic regime via small feedback perturbations to an accessible
parameter. The control perturbation is given when the orbit
crosses a given Poincare´ section, such that the trajectory will
be close to the stable manifold of the desired UPO. In this
method, in the limit of zero noise, the orbit of the controlled
system is identical to the UPO of the uncontrolled system
and the feedback perturbation vanishes. A drawback for the
Ott-Gregobi-Yorke~OGY! method is that it becomes diffi-
cult to apply for very fast systems, since it requires computer
analysis of the system at each crossing of the Poincare´ sec-
tion. Also, noise can result in occasional bursts where the
trajectory wanders far from the controlled periodic orbit.

~b! An alternative method of feedback stabilization of
UPO’s, introduced by Pyragas@3#, consists of a continuous
linear feedback applied at each computational time step. As
in the OGY case, in this method the controlled orbit coin-
cides with the UPO of the uncontrolled system and the feed-
back vanishes, for zero noise, when control is achieved. The
feedback procedure can be applied without knowinga priori
the location of the periodic orbit, for a version in which the
feedback term contains a delayed variable, in which the de-
lay corresponds to the period of the UPO. Moreover, it is
expected that it can be used for fast systems, since no param-
eters are changed on a fast time scale and the method does
not require a computer analysis of the system. For some
systems, the method is robust even in the presence of con-
siderable noise@6#. A disadvantage of Pyragas’s method is
that it achieves control only over a limited range of the pa-

rameter space, i.e., a given orbit will become eventually un-
stable in the controlled system as the parameters are varied
more deeply into the chaotic regime. The use of delayed
feedback also increases the dimensionality of the system.
Socolaret al. @4# extended the Pyragas method to include, in
the control term, memory of all the previous states of the
system and were thereby able to increase the region of the
parameter space where control can be achieved. The dimen-
sionality of the system also increased in this method, to the
same extent as in the method of Pyragas.

The desirable properties of a control system depend on
the application. Here we consider a system with a fixed pe-
riod UPO that we are attempting to control. The parameters
that control the coordinates of the UPO may be slowly vary-
ing compared to the UPO period. The system can be consid-
ered subject to noise, which may take the system coordinates
away from the periodic orbit. In this general situation we
may consider the following properties of the control system
as desirable.~i! In the neighborhood of the periodic orbit
~assumed stably controlled! the actual orbit returns optimally
fast to the periodic orbit when perturbed away from it~in the
limiting case the orbit is superstable!. ~ii ! A slow drift in
parameters can be tracked by the control over the largest
possible parameter space.~iii ! In the larger space we~non-
linearly! want the stability to be maintained over the widest
range of uncertainty in either the system parameters or the
dynamical variables~basin of attraction! caused by noise.
~iv! In some average sense, we wish to minimize the time
required to return to the desired solution from the basin of
attraction~in the nonlinear regime!.

In Sec. II we examine these criteria for control of a fixed
point of a mapping corresponding to a periodic solution of a
continuous system, with a known period. We use the well
studied logistic map as the test bed for the study. Here we
introduce modifications to the control methods of Pyragas,
and Socolar, using a nonlinear function in the feedback term.
As in the OGY, Pyragas, and Socolar methods, the stabilized
orbit is identical to the UPO of the uncontrolled system, and
when control is achieved the magnitude of the feedback term*Electronic address: mariav@eecs.berkeley.edu
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vanishes in the absence of noise. First, we compare the linear
control of Pyragas with an analogous nonlinear control.
Next, we compare the case in which memory is introduced
into the mapping parameters with case in which memory is
introduced into the nonlinear control. In Sec. III we intro-
duce a special case of nonlinear control with memory that
reduces to a remarkable simple form, whose properties are
generally better than the other cases examined. We show that
this latter control can be used efficiently to control other
periodic points and higher-dimensional mappings.

II. COMPARISON OF CONTINUOUS CONTROL
METHODS

We start by describing Pyragas’s method@3#. He consid-
ered a dynamical system that is governed by ordinary differ-
ential equations, which are, in principle, unknown. However,
some scalar variabley can be measured as a system output
and the system also has an input available for an external
force f . These assumptions can be met by the model

dy

dt
5P~y,x!1 f ~ t !,

dx

dt
5Q~y,x!, ~1!

wherex describes the remaining variables of the dynamical
system that are not available for observation or not of inter-
est. The forcing term disturbs only the variabley and it is
assumed that the system may be in the chaotic regime when
the forcing termf (t) is zero.

Pyragas studied two types of forcing. In the first method
one determines the UPOyi of the chaotic attractor from
y(t), following well known algorithms@7#. Then one designs
an oscillator that has an orbit equal to that ofyi . The forcing
term is given in this case byf (t)5K@yi(t)2y(t)#, where
K is an empirically adjustable weight of the perturbation. In
the other type of forcing considered by Pyragas, the forcing
term contains a delayed term of the variabley, namely,
f (t)5K@y(t2t)2y(t)#, wheret is the delay time. If the
delay time coincides with period of thei th UPO then the
perturbationf (t) vanishes andy(t) will coincide with UPO,
as in the first case. However, in this last case, one does not
need to know the UPO, just its period, nor is it necessary to
design an external oscillator.~Although Pyragas described
his method for the situation in which one knows only a time
series, in all the cases he studied the equations that described
the system were known.! Here we are concerned with the
second method, i.e., the delayed feedback case.

Applying Eq.~1! for the stabilization of a period-one orbit
in a one-dimensional mappingF(xn), we have

xn115F~xn!1K@xn2xn21#. ~2!

The controlled system has dimensionality equal to 2 instead
of 1 for the unperturbed system. The eigenvalues of Eq.~2!
are given by expanding it about the equilibriumxn115xn to
obtain

l1,25
F81K6A@F81K#224K

2
, ~3!

whereF8[F8(xf) is the derivative ofF with respect toxn at
the fixed pointxf .

We illustrate this method of control using the logistic map

xn115F~xn!54axn~12xn!. ~4!

This map presents a sequence of period doubling bifurca-
tions asa increases and enters into chaos ata'0.8925. The
period-one orbit is stable froma50 to a53/4. The fixed
point xf for the period-one orbit is zero for 0<a,1/4 and
xf5121/4a for 1/4,a,3/4. If a,0 or a.1, the attractor
is unbounded, diverging to infinity. The attractor will also
diverge if the initial conditionx0 is not in the interval@0, 1#.
The period-one orbit loses stability when one of the eigen-
values has modulus larger than 1. For the logistic map, for
K,1, an eigenvalue crosses21, causing the appearance of
a pitchfork bifurcation. When this occurs, Eq.~3! gives
F8(xf)52122K. Since, for the logistic map,
F8(xf)5224a, the bifurcation pointa* is

a*5
312K

4
. ~5!

A Hopf bifurcation occurs atK51, where the eigenvalues
cross the unit circle with imaginary values. Beyond this
value ofK there is no stable solution, so the maximum value
of a where control can be achieved is given bya*51.25.

We compare these results with the use of a nonlinear
rather than a linear function in the feedback term. Thus the
forcing term to stabilize a periodic orbit is given by is a
nonlinear functionG(xn ,xn21). Obviously, many choices
can be made forG, with the constraint thatG50 in the
desired UPO. Perhaps the simplest construction is
G52K@F(xn)2F(xn21)#, with K.0, since with this feed-
back one does not need to know the equationF(xn) that
governs the system. We show how this control could be ap-
plied in the block diagram displayed in Fig. 1. This feedback
also gave a better performance with respect to basin of at-
traction and transient time than other nonlinear functions.

For the period-one orbit, our controlled system can be
written as

xn115F~xn!2K@F~xn!2F~xn21!#. ~6!

The eigenvalues for this equation are

l1,25
~12K !F86A@~12K !F8#214KF8

2
. ~7!

FIG. 1. Block diagram for the nonlinear feedback control of
chaos without memory.
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When a pitchfork bifurcation occurs, forK not very large,
the most negative eigenvalue is equal to21. From Eq.~7!
we obtainF8(xf)521/(122K). For the logistic map this
gives

a*5
324K

4~122K !
. ~8!

From Eq. ~8! we see that ifK,0, then a*,3/4. For
K.1/3, the period-one loses its stability not via a period
doubling bifurcation, but via a Hopf bifurcation. For this
case, we obtain

a*5
112K

4K
. ~9!

With Eqs. ~8! and ~9! we find that the maximum value for
a where control can be achieved with this method is also
a*51.25, which occurs atK51/3.. We comparea* as a
function ofK for the nonlinear control in Fig. 2~solid line!
to that using the linear control of the Pyragas’s method
~dashed line!. In Fig. 3 we compare the values of log2ulu,
with l being the least stable eigenvalue, for nonlinear con-
trol ~solid line! with linear feedback~dashed line! and with
no control ~short-dashed line!. We note that the transient
time ~in the linear regime!, which is proportional to
1/zlog2uluz, is smaller in the nonlinear control than in Pyra-
gas’s method. Also, the superstable orbit log2ulu52` is pre-
served with the nonlinear control.@The reader might well ask
why the parameters linearized around the fixed point are not
the same for linear and nonlinear control. The use of a linear
~in x) control parameter withK→K(4a22) brings the re-
sults into coincidence. However, a dependence of the control
on a introduces a new complexity into the feedback, which
we consider below#. We note in Fig. 2 that the largest range
of stablea, a,a* , occurs atK51 for the linear control.
This has significant disadvantages when we consider the
nonlinear phase space, as we now show.

We numerically determined the basin of attraction by con-
structing a grid of initial conditions in the (xn21 ,xn) space
and determining which are attracted to the fixed point. The
effect of noise on the stability is qualitatively examined by

constructing a noise circle around the fixed point, which just
touches the basin boundary, and finding the radiusr of the
circle. We illustrate these properties in Fig. 4~a! for the non-
linear control and in Fig. 4~b! for the linear control. In Fig. 5
we show howr varies witha for the nonlinear control at

FIG. 2. Boundary of stability of the period-one orbit for the
nonlinear control method without memory~solid line! and Pyra-
gas’s linear control~dashed line!.

FIG. 3. Liapunov exponent log2ulu as a function ofa for the
nonlinear control method without memory~solid line! with
K51/3 ~the value ofK that gives the maximuma* ), Pyragas’s
linear control~dashed line! along the dotted line of Fig. 2, and for
the uncontrolled logistic map~short-dashed line!.

FIG. 4. Basin of attraction and noise circle for the nonlinear
control without memory fora51 andK51/3 and ~b! Pyragas’s
linear control fora51 andK50.75.
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K51/3 ~solid line! and for the linear control along the dotted
line of Fig. 2 ~dashed line!. We see that the nonliner control
is more robust in the presence of noise.

Another method of control of chaos that follows Pyra-
gas’s ideas was introduced by Bielawskiet al. @5#. In this
method the forcing is given to an accessibleparameterof the
system instead of adding a feedback term to the equation.
The controlled logistic map in this case is given by

xn1154~a1en!xn~12xn!, ~10!

with en5(K/4)(xn2xn21). The method has been general-
ized by Socolaret al. @4#, with the controlled logistic map
given by Eq.~10!, but with

en5
K

4
~xn2xn21!1Ren21 , ~11!

whereR,1. The caseR50 reduces to the Bielawski con-
trol. Socolaret al. @4# have shown that this form of the con-
trol parameter is equivalent to including memory of all the
past states of the system. The dimensionality of the new map
is also two with the variablesxn anden . The eigenvalues are

l1,25
F81R1g6A@F81R1g#224@F8R1g#

2
, ~12!

whereg5K(4a21)/(4a)2. A pitchfork bifurcation occurs
at

K58a* 2~R11!~4a*23!/~4a*21!. ~13!

A Hopf bifurcation occurs at

K516a* 2@112R~2a*21!#/~4a*21!. ~14!

The stability boundariesa* (K,R) are given by Eqs.~13! and
~14!. By varyingR one finds that, in the absence of noise,
control can be achieved for arbitrary large values ofa. How-
ever, the width of the window ina where control can be
achieved decreases asa increases.

Memory can also be included in the form of nonlinear
control by a generalization of Eq.~6!,

xn115F~xn!1en , ~15!

en1152K@F~xn11!2F~xn!#1Ren . ~16!

When R50 this control reduces to the case of nonlinear
control studied above. The eigenvalues are

l1,25
~12K !F81R6A@~12K !F81R#214~K2R!F8

2
~17!

and the stability boundaries for the logistic map are obtained
from

a*5
3~11R!24K

4~11R!28K
~18!

for a pitchfork bifurcation and

a*5
1

2
1

1

4~K2R!
~19!

for a Hopf bifurcation. The maximum value ofa where con-
trol can be achieved in this method isa*5(5
2R)/4(12R), which occurs atK5(R11)2/(R13). In Fig.
6 the stability boundaries are shown for the mappings given
by Eqs. ~15! and ~16! ~solid line! and Eqs.~10! and ~11!
~dashed line!, with R50.5. For both mappings, the addition
of a memory term~finite R) extends the region in parameter
space thata can be tracked. There is a distinct difference in
the results of Fig. 6 for the two methods of control. For the
Socolar method the range ofa that can be stabilized becomes
small, asK tracksa to large values. In contrast, the additive
nonlinear control picks out a value ofK for which the map-
ping can be controlled for all values ofa up to a maximum
and thus is not sensitive to parameter drift or uncertainty.
The range ofa that can be controlled at the fixed point in-
creases without bound, asR→1.

There is the price to pay for having a finiteR when the
variable is subject to noise. For example, atR50.5, a51,
and K50.6428 for the additive nonlinear control and

FIG. 5. Noise radiusr as a function ofa for the nonlinear
control method atK51/3 ~solid line! and for Pyragas’s linear con-
trol along the dotted line of Fig. 2~dashed line!.

FIG. 6. Boundary of stability for the period-one orbit using our
nonlinear control method with memory~solid line! and Socolar’s
control method~dashed line!, with R50.5 in both cases.
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K51.8333 for the parameter control, which correspond, re-
spectively, to the diamond and cross shown in Fig. 6, we
numerically find the basin of attraction for the two cases. The
result for additive nonlinear control is shown in Fig. 7~a! and
for control in the parameter in Fig. 7~b!. In both cases the
stabilization region has been decreased from that without
memory, but much more so with parameter control for which
the basin appears to be fractal. The calculation of the noise
radius here is somewhat subtle, sincee does not have a clear
physical meaning. If we add a noise termdx to the right-
hand side of Eqs.~10! and ~11! we note that, when the sys-
tem is at the fixed point, the variation inxn11 will still be
dx. However, the variation inen11 will be (11K/4)dx. If
the same procedure is applied to Eqs.~15! and ~16! we find
that the variation inen11 will now be @12KF8(xf)#dx.
Therefore the noisedx is amplified in thee variable in both
cases, with distinct multiplicative factors. To compensate for
this, we contract thee coordinate by the respective factor
before calculating the noise radius in the basin of attraction
of the additive nonlinear control and the parameter control.
Our results are shown in Fig. 8 forR50.5, for nonlinear
additive control~solid line!, calculated atK50.6428, and for
parameter control~dashed line!, calculated at the median line
of the stability boundary shown in Fig. 6. We find that the
nonlinear additive control is more robust to noise than the
parameter control. However, for the same value ofa the

nonlinear control withR.0 is less robust than the case with
R50, which is shown in Fig. 5. We must also consider the
effect of varyingR. We do this only for the case of the
additive nonlinear control in the next section.

III. AN OPTIMAL CONTROL FUNCTION

Although, the nonlinear control, with a memory factor
R, has a number of desirable properties, there is the draw-
back that for a givenR at the value ofK for which a*
obtains its maximum value, there is no superstable orbit~this
also occurs in the parameter control!. Since operation at a
superstable orbit is very desirable from the perspective of
return to the fixed point solution in the presence of noise, we
look for a relation betweenK andR for which a superstable
orbit is recovered by settingl50 in Eq. ~17!. We find two
solutions

R50, F8~xf !50 ~20!

that, for the logistic map, correspond toa50.5, which is the
solution without memory, and

R5K, K5
F8~xf !

F8~xf !21
, ~21!

which, for the logistic map, corresponds to
K5(4a22)/(4a21). We call the second solution Eq.~21!
an optimized control function, as it allows operation with
superstability, i.e., with maximum control at the fixed point,
for 0<a,`. We find that this solution has other desirable
properties, such as a large basin of attraction and, remark-
ably, it reduces the phase space to a single degree of free-
dom.

SubstitutingR5K into Eq. ~16! and eliminatingen in
favor of xn11 by using Eq. ~15!, we obtain
en1152K@F(xn11)2xn11#. Dropping the index by 1 and
substituting for en in Eq. ~15!, we obtain a remarkably
simple form for the mapping equation

xn115F~xn!2K@F~xn!2xn#, ~22!

FIG. 7. Basin of attraction and noise circle for~a! our nonlinear
control with memory atK50.6428 and Socolar’s control method at
K51.8333. In both cases,R50.5 anda51. These parameters cor-
respond to the diamond and cross shown in Fig. 6.

FIG. 8. Rescaled noise radiusr as a function ofa for our non-
linear control with memory withK50.6428~that is, the value of
K that gives the maximuma* in Fig. 6! and Socolar’s control
method along the median line of the boundary of stability shown in
Fig. 6. In both casesR50.5.
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which is valid for control of the period-one orbit in one-
dimensional maps. At the fixed point, the magnitude of the
feedback term vanishes, as in the other methods studied here.
A block diagram of the optimal control scheme is shown in
Fig. 9. One expects this method to be easy to implement in
experiments since the control term contains only amplified
versions of the input and output of the dynamical system and
one does not need to knowF to apply the control. We note
that for the particular case of a mapping, the period-one orbit
is a fixed point. Thus the variable itself can be thought of as
a delayed signal at the fundamental period of the updated
variable. This property allows us to use a feedback signal
with the same index as the mapping function itself. The de-
layed feedback is seen explicitly for control of differential
equations, as discussed below. The eigenvalue for Eq.~22! is
given by

l5~12K !F8~xf !1K. ~23!

This map loses stability via a pitchfork bifurcation, where
l521. Consequently, the bifurcation point for the con-
trolled logistic map is at

a*5
32K

4~12K !
. ~24!

Thus we see that the parameter region where the period-one
orbit is stable increases asK increases and tends to infinity as
K tends to one.

The superstable orbitl50 is obtained at

as5
22K

4~12K !
, ~25!

where the subscripts denotes superstable orbit. Also here
as increases withK and goes to infinity asK tends to one. In
Fig. 10 we show, as a function ofK, the valuesa* where the
period-one orbit bifurcates~solid line! and the valuesas of
the superstable orbit~dashed line!. We plot in Fig. 11 the
Liapunov exponent log2ulu as a function of a for
K50,0.4,0.8. One can see from this figure that increasing
K increases the range of the parametera around the super-
stable orbit for which a given transient time can be achieved.

We now calculate the basin of attraction of the controlled
UPO. Since our controlled map is one-dimensional this can
be found easily. Using Eq.~22! with F given by Eq.~4! the
convergence to the UPO will be attained when
0<x0<11K/@4a(12K)#. Substituting fora at the super-
stable orbit from Eq.~25! we obtain

0<x0<11
K

22K
. ~26!

The basin of attraction increases withK, extending from
0–1 atK50 to 0–2 atK51. Since the fixed point is at
xf5121/4a, the noise radius around the fixed point is

r5minF12
1

4a
,

K

4a~12K !
1

1

4aG , ~27!

which, at the superstable orbit, gives

r s5
1

22K
, ~28!

such thatr s varies from 0.5 to 1 asK varies from 0 to 1.
Comparing Eq.~28! to our previous control parameters we
see that this optimized control maintains stability better in
the presence of noise.

Although the superstable orbit is maintained, it is not
clear what happens to the time constant for return to the
periodic orbit asK→1, for initial conditions that are started
far away from the fixed point. To study the effect ofK on the
nonlinear transient we do the following. We start the system

FIG. 9. Block diagram for our optimal control method.

FIG. 10. a* andas for the logistic map using the optimal con-
trol method.

FIG. 11. Liapunov exponent log2ulu for K50 ~solid line!,
K50.4 ~dashed line!, andK50.8 ~long-dashed line! for the logistic
map using the optimal control method.
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with 1000 different initial conditions, uniformly distributed
in the interval @0,11K/4a(12K)#. Then we verify how
many iterations on average are necessary to bring the orbit
within a radius of 1024 around the fixed point. The result of
the nonlinear transient as a function ofK for a5as is shown
in Fig. 12. It increases slightly asK increases and goes to
infinity at K51, where Eq.~22! is marginally stable.

In a more general way, the nonlinear control with memory
for stabilization of an UPO in a one-dimensional map with
periodm is is given by

xn1m5Fm~xn!1en , ~29!

en1m52K@Fm~xn1m!2Fm~xn!#1Ren . ~30!

For the case in whichK5R this control reduces to the opti-
mized version

xn1m5Fm~xn!2K@Fm~xn!2xn#. ~31!

Also for higher periodic orbits the dimensionality of the con-
trolled map is still one. The fixed points of the iterated map
are identical to the fixed points of the uncontrolled equation.
We have applied the optimized control for a period two orbit
(m52) of the logistic map, in which the fixed points
are given by xf5@4a116A(4a23)(4a11)#/8a.
The eigenvalue for the period-two orbit can be easily
calculated and one finds that a pitchfork bifurcation
from period two to period four will occur when

a*5 1
4 @11A51(11K)/(12K)#. The superstable orbit is

at as5
1
4 @11A51K/(12K)#. The value ofa where the

bifurcation from period one to period two occurs is at
a50.75, which is the same value found in the uncontrolled
map. Consequently, the region of the parameter space where
control can be achieved in the period-two orbit also grows
with increasingK and goes to infinity asK tends to one. We
note that the period-two orbit is also controllable by the
methods considered in Sec. II, but are also ‘‘nonoptimal’’ in
the sense that we have discussed.

Although the results of our study of controlling a simple
one-dimensional mapping are suggestive of general underly-

ing principles, they are not generic. A generalization of our
‘‘optimized’’ control scheme for a period-one orbit can be
expressed in the form

un115P~un ,vn!1f, vn115Q~un ,vn!, ~32!

whereu is a vector of the variables that are available for
observation andv describes the remaining variables of the
dynamical system, which are not available or not of interest.
The control term operates only on theu vector and is given
by f5K@un2P(un ,vn)#. We apply this more general form to
a higher-dimensional mapping. For a specific example, we
study the He´non map, which is given by

xn11511yn2axn
2 , yn115bxn . ~33!

In this map, forb50.3 ~which is the case we consider here!,
the period-one orbit is stable in the interval
20.1225&a&0.3671. The system enters into chaos when
a*1.059 and the orbit becomes unbounded fora*1.428.
For this map we can use three types of control: in both vari-
ables, only in thex variable, or only in they variable. For the
first type of control we have

xn11511yn2axn
22K@11yn2axn

22xn#, ~34!

yn115bxn2K@bxn2yn#. ~35!

For the second type of control the equations are

xn11511yn2axn
22K@11yn2axn

22xn#, ~36!

yn115bxn . ~37!

The third type of control gives

xn11511yn2axn
2 , ~38!

yn115bxn2K@bxn2yn#. ~39!

In all these cases the fixed points are the same as in the
uncontrolled He´non map and the feedback term vanishes
when control is achieved. We have found that the control
does not change the lower boundary of the region of stability
of the period-one orbit. However, the upper boundary in-
creases asK increases for the three types of forcing. For
example, for K50.4 the period-one orbit bifurcates at
a'1.98, 1.74, and 0.49 for the the first, second, and third
methods, respectively. Thus different types of control have
different regions for which stabilization is possible. For the
Hénon map the largest region of control occurs when thex
and y variables are controlled simultaneously. The largest
Liapunov exponent for the uncontrolled and for the con-
trolled Hénon map is shown in Fig. 13, also forK50.4. As
we see, no superstable orbit exists for anya, for the period-
one orbit in the uncontrolled equation withb50.3. The feed-
back terms we use to expand the region of stability modifies
the location of the most stable orbit but do not create a su-
perstable orbit when one does not exist for any value ofa in
the uncontrolled equation.

FIG. 12. Nonlinear transient for the logistic map along the line
of the superstable orbit,as , shown in Fig. 9.
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IV. CONCLUSIONS AND DISCUSSION

We have generalized a method introduced by Pyragas@3#,
used to control an otherwise unstable periodic orbit, as ap-
plied to mappings. The method consists of feeding back a
delayed signal with the delay equal to the period to be con-
trolled, done in such a manner that the position of the stabi-
lized orbit in the phase space is not changed. The generali-
zation consists of feeding back the nonlinear mapping signal
rather than a signal linearized around the fixed point. This
increases the basin of attraction of the controlled signal and
thus decreases the sensitivity to noise. However, the range of
parameters for which control can be achieved is limited. An
addition to the control procedure, introduced by Socolar
et al. @4#, is to allow memory of all previous periods. This
latter procedure was implemented in the mapping parameter
rather than directly into the variables. The method allows an
arbitrary range of the parameter in the logistic map to be
tracked, but at the expense of a rapidly decreasing the basin
of attraction with increasing range of parameter tracking. A
generalization of the nonlinear feedback applied to the vari-
ables, to include memory, also allows arbitrary tracking of
the parameter, with a significantly improved basin of attrac-
tion. All of these above control procedures increase the di-
mensionality of the phase space for a one-dimensional map
to 2.

For control with memory there are two parameters to be
chosen, the control parameterK and the memory parameter
R. For the general case,RÞK, there is no superstable orbit.
However, for nonlinear control with the choiceR5K the

superstable orbit is recovered and, remarkably, the phase
space for the controlled logistic map is again one dimen-
sional. Because we recover the superstable orbit we call this
an optimized solution.

The control methods we have been considering have in
common with the OGY method the following properties: the
fixed points of the controlled map are the same as in the
uncontrolled system, the feedback term vanishes in the ab-
sence of noise when control is achieved, and one does not
need to know the mapping equations in order to apply the
control. Unlike the OGY method, no computer analysis of
the system is necessary to apply the control and the methods
probably can be applied for fast systems, and knowledge of
the location of the unstable periodic orbit is not necessary.
For the optimized control, the dimensionality of the con-
trolled equations is the same as in the uncontrolled system;
the control does not destroy the superstable orbit of the un-
controlled system, while simultaneously control can be
achieved in a very large region of the parameter space; the
basin of attraction of the controlled orbit is larger than in the
other methods; and, consequently, the control is more robust
in the presence of noise.

Although we have only considered the application to
mappings of the various methods of control, the methods are
also applicable to continuous systems governed by ordinary
differential equations~ODE’s!. This was considered in the
original paper by Pyragas@3#, who applied the linear control
to the Roessler, Duffing and Lorenz systems. However, un-
like a mapping, a simple delay makes the dimensionality of
the system infinite. We can generalize our nonlinear feed-
back control for the case of ODE’s. For the method without
memory the f (t) in Eq. ~1! is replaced by f (t)
52K@P„y(t),x(t)…2P„y(t2t),x(t2t)…#, where t is the
period of the UPO. For the nonlinear control with memory
Eq. ~1! becomes dy(t)/dt5P„y(t),x(t)…1e(t), with
e(t)52K@P„y(t),x(t)…2P„y(t2t),x(t2t)…#1Re(t2t).
In the case of the optimized control we have for they equa-
tion dy(t)/dt5(12K)P„y(t),x(t)…1K@dy(t2t)/dt#. We
have achieved control of the Roessler system using all of
these types of feedback. We are currently investigating
which methods give the best performance with respect to the
issues that we considered in this paper.
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FIG. 13. Largest Liapunov exponent log2ulu for the Hénon map
without feedback~label Hénon!, with feedback in thex andy vari-
ables~labelxy), with feedback only in thex variable~labelx), and
with feedback only in they variable~label y).
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